Перевод: со всех языков на все языки

со всех языков на все языки

principal dimensions of a ship

  • 1 dimensions

    Англо-русский технический словарь > dimensions

  • 2 principal

    1) доверитель

    2) стропильная ферма
    3) главный
    4) основной
    5) основная сумма
    6) капитал
    7) кардинальный
    8) принципиальный
    9) совершенный
    arched principal
    principal axis
    principal branching
    principal crew
    principal diagonal
    principal diameter
    principal dimensions
    principal divisor
    principal focus
    principal fron
    principal maximum
    principal meridian
    principal minor
    principal mode
    principal plane
    principal planets
    principal point
    principal ray
    principal root
    principal stress
    principal view

    principal dimensions of a ship<engin.> главные размерения корабля


    principal ideal domainобласть главных идеалов


    principal moment of inertiaглавный момент инерции


    radius of principal curvatureрадиус главной кривизны

    Англо-русский технический словарь > principal

  • 3 ship

    1) судно

    2) брандвахта
    3) корабль
    4) насылать
    5) судовый
    6) <transp.> корабельный
    7) судовой
    auxiliary ship
    bow of a ship
    break up ship
    cable ship
    carvel ship
    class of ship
    container ship
    crane ship
    depot ship
    dry cargo ship
    dry-cargo ship
    endurance of ship
    fabricated ship
    factory ship
    fuel ship
    guard ship
    hog of ship hull
    lay up ship
    leave off ship
    merchant ship
    passenger ship
    plank ship
    refrigerator ship
    sea endurance of ship
    ship by air freight
    ship by water
    ship framing
    ship is stranded
    ship paint
    ship stabilizer
    ship timber
    ship waves
    sunk ship
    trailer ship
    transport ship
    weather ship

    block coefficient of a shipкоэффициент заполнения судна


    bring ship to anchorставить судно на якорь


    fishing factory shipрыбопромысловая плавучая база


    principal dimensions of a ship<engin.> главные размерения корабля


    propulsive quality of shipходкость судна


    ship breaks her backсудно переламывается


    ship construction basinсудостроительный бассейн


    ship drags her anchorсудно тащится на якоре


    ship is lying at dockсудно находится в доке


    ship is lying idleсудно на приколе


    ship repair yards<engin.> завод судоремонтный


    underseas exploration shipсудно для подводных исследований


    whaling factory shipкитобойная плавучая база

    Англо-русский технический словарь > ship

  • 4 главное размерение

    Русско-английский военно-политический словарь > главное размерение

  • 5 размерение

    Русско-английский военно-политический словарь > размерение

  • 6 Waymouth, Bernard

    SUBJECT AREA: Ports and shipping
    [br]
    b. unknown
    d. 25 November 1890 London, England
    [br]
    English naval architect, ship surveyor and designer of the clipper ship Thermopylae.
    [br]
    Waymouth had initial training in shipbuilding at one of the Royal Dockyards before going on to work at a privately owned shipyard. With this all-round experience he was accepted in 1854 by Lloyd's Register of Shipping as a surveyor, and was to serve the Society well during a period of great change in ship design. In 1864 he was charged with the task of framing the Rules for the Construction of Composite Built Vessels, i.e. ships with main structural members such as keel, frames and deck beams of iron and with the hull sheathing or planking of timber. Although long superseded, these rules were of considerable consequence at the time and they were accompanied by beautiful drawings executed by Harry J.Cornish, who became Chief Ship Surveyor of Lloyd's from 1900 until 1909. In 1870 revolutionary proposals were made for iron ships that led to the adoption of a new form of rules where the scantlings or size of individual parts were related to the overall dimensions of the vessel. The symbol 100A1 was then adopted for the first time.
    Waymouth was more than a theoretical naval architect: in the late 1860s he was commissioned by the shipbuilders Walter Hood to design the famous Aberdeen Clipper Thermopylae. This was one of the fastest sailing ships of the nineteenth century and, along with its Clyde-built counterpart Cutty Sark, proved the efficacy of composite construction for these specialist vessels.
    Waymouth was appointed Principal Surveyor of Lloyd's in 1870 and was Secretary of the Society from 1872 until his death at work in 1890. He was a member of the Royal Commission on Tonnage and of the Enquiry into the loss of HMS Atlanta, and at the time of his death was Vice-President of the Institution of Naval Architects.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Naval Architects.
    Further Reading
    Annals of Lloyd's Register, 1934, London.
    FMW

    Biographical history of technology > Waymouth, Bernard

  • 7 Elder, John

    [br]
    b. 9 March 1824 Glasgow, Scotland
    d. 17 September 1869 London, England
    [br]
    Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.
    [br]
    John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.
    Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.
    His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.
    In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1869.
    Further Reading
    Obituary, 1869, Engineer 28.
    1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of the
    Institution of Engineers and Shipbuilders in Scotland.
    Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.
    The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.
    P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).
    RLH / FMW

    Biographical history of technology > Elder, John

  • 8 Psychology

       We come therefore now to that knowledge whereunto the ancient oracle directeth us, which is the knowledge of ourselves; which deserveth the more accurate handling, by how much it toucheth us more nearly. This knowledge, as it is the end and term of natural philosophy in the intention of man, so notwithstanding it is but a portion of natural philosophy in the continent of nature.... [W]e proceed to human philosophy or Humanity, which hath two parts: the one considereth man segregate, or distributively; the other congregate, or in society. So as Human philosophy is either Simple and Particular, or Conjugate and Civil. Humanity Particular consisteth of the same parts whereof man consisteth; that is, of knowledges which respect the Body, and of knowledges that respect the Mind... how the one discloseth the other and how the one worketh upon the other... [:] the one is honored with the inquiry of Aristotle, and the other of Hippocrates. (Bacon, 1878, pp. 236-237)
       The claims of Psychology to rank as a distinct science are... not smaller but greater than those of any other science. If its phenomena are contemplated objectively, merely as nervo-muscular adjustments by which the higher organisms from moment to moment adapt their actions to environing co-existences and sequences, its degree of specialty, even then, entitles it to a separate place. The moment the element of feeling, or consciousness, is used to interpret nervo-muscular adjustments as thus exhibited in the living beings around, objective Psychology acquires an additional, and quite exceptional, distinction. (Spencer, 1896, p. 141)
       Kant once declared that psychology was incapable of ever raising itself to the rank of an exact natural science. The reasons that he gives... have often been repeated in later times. In the first place, Kant says, psychology cannot become an exact science because mathematics is inapplicable to the phenomena of the internal sense; the pure internal perception, in which mental phenomena must be constructed,-time,-has but one dimension. In the second place, however, it cannot even become an experimental science, because in it the manifold of internal observation cannot be arbitrarily varied,-still less, another thinking subject be submitted to one's experiments, comformably to the end in view; moreover, the very fact of observation means alteration of the observed object. (Wundt, 1904, p. 6)
       It is [Gustav] Fechner's service to have found and followed the true way; to have shown us how a "mathematical psychology" may, within certain limits, be realized in practice.... He was the first to show how Herbart's idea of an "exact psychology" might be turned to practical account. (Wundt, 1904, pp. 6-7)
       "Mind," "intellect," "reason," "understanding," etc. are concepts... that existed before the advent of any scientific psychology. The fact that the naive consciousness always and everywhere points to internal experience as a special source of knowledge, may, therefore, be accepted for the moment as sufficient testimony to the rights of psychology as science.... "Mind," will accordingly be the subject, to which we attribute all the separate facts of internal observation as predicates. The subject itself is determined p. 17) wholly and exclusively by its predicates. (Wundt, 1904,
       The study of animal psychology may be approached from two different points of view. We may set out from the notion of a kind of comparative physiology of mind, a universal history of the development of mental life in the organic world. Or we may make human psychology the principal object of investigation. Then, the expressions of mental life in animals will be taken into account only so far as they throw light upon the evolution of consciousness in man.... Human psychology... may confine itself altogether to man, and generally has done so to far too great an extent. There are plenty of psychological text-books from which you would hardly gather that there was any other conscious life than the human. (Wundt, 1907, pp. 340-341)
       The Behaviorist began his own formulation of the problem of psychology by sweeping aside all medieval conceptions. He dropped from his scientific vocabulary all subjective terms such as sensation, perception, image, desire, purpose, and even thinking and emotion as they were subjectively defined. (Watson, 1930, pp. 5-6)
       According to the medieval classification of the sciences, psychology is merely a chapter of special physics, although the most important chapter; for man is a microcosm; he is the central figure of the universe. (deWulf, 1956, p. 125)
       At the beginning of this century the prevailing thesis in psychology was Associationism.... Behavior proceeded by the stream of associations: each association produced its successors, and acquired new attachments with the sensations arriving from the environment.
       In the first decade of the century a reaction developed to this doctrine through the work of the Wurzburg school. Rejecting the notion of a completely self-determining stream of associations, it introduced the task ( Aufgabe) as a necessary factor in describing the process of thinking. The task gave direction to thought. A noteworthy innovation of the Wurzburg school was the use of systematic introspection to shed light on the thinking process and the contents of consciousness. The result was a blend of mechanics and phenomenalism, which gave rise in turn to two divergent antitheses, Behaviorism and the Gestalt movement. The behavioristic reaction insisted that introspection was a highly unstable, subjective procedure.... Behaviorism reformulated the task of psychology as one of explaining the response of organisms as a function of the stimuli impinging upon them and measuring both objectively. However, Behaviorism accepted, and indeed reinforced, the mechanistic assumption that the connections between stimulus and response were formed and maintained as simple, determinate functions of the environment.
       The Gestalt reaction took an opposite turn. It rejected the mechanistic nature of the associationist doctrine but maintained the value of phenomenal observation. In many ways it continued the Wurzburg school's insistence that thinking was more than association-thinking has direction given to it by the task or by the set of the subject. Gestalt psychology elaborated this doctrine in genuinely new ways in terms of holistic principles of organization.
       Today psychology lives in a state of relatively stable tension between the poles of Behaviorism and Gestalt psychology.... (Newell & Simon, 1963, pp. 279-280)
       As I examine the fate of our oppositions, looking at those already in existence as guide to how they fare and shape the course of science, it seems to me that clarity is never achieved. Matters simply become muddier and muddier as we go down through time. Thus, far from providing the rungs of a ladder by which psychology gradually climbs to clarity, this form of conceptual structure leads rather to an ever increasing pile of issues, which we weary of or become diverted from, but never really settle. (Newell, 1973b, pp. 288-289)
       The subject matter of psychology is as old as reflection. Its broad practical aims are as dated as human societies. Human beings, in any period, have not been indifferent to the validity of their knowledge, unconcerned with the causes of their behavior or that of their prey and predators. Our distant ancestors, no less than we, wrestled with the problems of social organization, child rearing, competition, authority, individual differences, personal safety. Solving these problems required insights-no matter how untutored-into the psychological dimensions of life. Thus, if we are to follow the convention of treating psychology as a young discipline, we must have in mind something other than its subject matter. We must mean that it is young in the sense that physics was young at the time of Archimedes or in the sense that geometry was "founded" by Euclid and "fathered" by Thales. Sailing vessels were launched long before Archimedes discovered the laws of bouyancy [ sic], and pillars of identical circumference were constructed before anyone knew that C IID. We do not consider the ship builders and stone cutters of antiquity physicists and geometers. Nor were the ancient cave dwellers psychologists merely because they rewarded the good conduct of their children. The archives of folk wisdom contain a remarkable collection of achievements, but craft-no matter how perfected-is not science, nor is a litany of successful accidents a discipline. If psychology is young, it is young as a scientific discipline but it is far from clear that psychology has attained this status. (Robinson, 1986, p. 12)

    Historical dictionary of quotations in cognitive science > Psychology

См. также в других словарях:

  • Dimensions D'un Navire — Vue des dimensions d un navire Pour mesurer un navire on utilise : les dimensions de la coque : une longueur hors tout, mesurée de l extrémité avant à l extrémité arrière (Loa) ; une largeur hors membres ou largeur au fort qui est… …   Wikipédia en Français

  • Ship gun fire-control system — Mk 37 Director c1944 with Mk 12 (rectangular antenna) and Mk 22 orange peel Ship gun fire control systems (GFCS) enable remote and automatic targeting of guns against ships, aircraft, and shore targets, with or without the aid of radar or optical …   Wikipedia

  • Dimensions d'un navire — Vue des dimensions d un navire Pour mesurer un navire on utilise : les dimensions de la coque : une longueur hors tout, mesurée de l extrémité avant à l extrémité arrière (Loa) ; une largeur hors membres ou largeur au fort qui est… …   Wikipédia en Français

  • Ship of the line — Navire de ligne Le navire de ligne est le navire de guerre qui fut le fondement de la guerre navale entre les marines européennes, du début du XVIIe siècle au milieu du XXe siècle. Sa principale caractéristique était de combattre… …   Wikipédia en Français

  • Wooden ship model — Wooden ship models or wooden model ships are scale representations of ships, constructed mainly of wood. This type of model has been built for over two thousand years. [Williams, Guy R. The World of Model Ships and Boats London 1971 Page 30 ]… …   Wikipedia

  • Passenger ship — A passenger ship is a ship whose primary function is to carry passengers. The category does not include cargo vessels which have accommodations for limited numbers of passengers, such as the ubiquitous twelve passenger freighters once common on… …   Wikipedia

  • Deck (ship) — For other uses, see Deck. A deck is a permanent covering over a compartment or a hull[1] of a ship. On a boat or ship, the primary deck is the horizontal structure which forms the roof for the hull, which both strengthens the hull and serves as… …   Wikipedia

  • Seakeeping — ability is a measure of how well suited a watercraft is to conditions when underway. A ship or boat which has good seakeeping ability is said to be very seaworthy and is able to operate effectively even in high sea states.Measure of Seakeeping… …   Wikipedia

  • List of ships of the line of the Royal Navy — This is a list of ships of the line of the Royal Navy of England, and later (from 1707) of Great Britain, and the United Kingdom. The list dates from 1660, the year in which the Royal Navy came into being after the restoration of the monarchy… …   Wikipedia

  • Hull (watercraft) — Half hull of the 46 gun ship of the line Tigre, build from 1724 in Toulon after plans by Blaise Coulomb A hull is the watertight body of a ship or boat. Above the hull is the superstructure and/or deckhouse, where present. The line where the hull …   Wikipedia

  • NZ Trawler Muriel — Muriel was a New Zealand trawler that was built in 1907 by Messrs Lane Sons of Totara North. Newspaper article, Christchurch 1937 The Muriel, No.121,590, was a wooden, screw steamer of 59 tons gross and 22 tons net register. Her dimensions were:… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»